满分5 > 高中数学试题 >

(1)已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),...

(1)已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),若此圆过点P的切线与双曲线的一条渐近线平行,求此双曲线的方程;
(2)已知双曲线的离心率e=manfen5.com 满分网,且与椭圆manfen5.com 满分网+manfen5.com 满分网=1有共同的焦点,求该双曲线的方程.
(1)先求出圆过点P的切线方程,进而求出双曲线的两条渐近线方程,再利用已知渐近线方程设出双曲线的方程,最后把点P的坐标代入即可求此双曲线的方程; (2)先求出椭圆中焦点坐标,求出双曲线中的c,再利用双曲线的离心率e=,求出a2和b2.就可求双曲线的方程. 【解析】 (1)切点为P(3,-1)的圆x2+y2=10的切线方程是3x-y=10. ∵双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称, ∴两渐近线方程为3x±y=0. 设所求双曲线方程为9x2-y2=λ(λ≠0). ∵点P(3,-1)在双曲线上,代入上式可得λ=80, ∴所求的双曲线方程为-=1. (2)在椭圆中,焦点坐标为(±,0), ∴c=,又e===,∴a2=8,b2=2. ∴双曲线方程为-=1.
复制答案
考点分析:
相关试题推荐
P为双曲线x2-manfen5.com 满分网=1右支上一点,M、N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,则|PM|-|PN|的最大值为    查看答案
设双曲线manfen5.com 满分网-manfen5.com 满分网=1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为    查看答案
过点P(4,4)且与双曲线manfen5.com 满分网-manfen5.com 满分网=1只有一个交点的直线有( )
A.1条
B.2条
C.3条
D.4条
查看答案
已知点F1、F2分别是双曲线manfen5.com 满分网的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若△ABF2为锐角三角形,则该双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.manfen5.com 满分网
C.(1,2)
D.manfen5.com 满分网
查看答案
设F1和F2为双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为( )
A.manfen5.com 满分网
B.2
C.manfen5.com 满分网
D.3
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.