满分5 > 高中数学试题 >

设函数f(x)=x--alnx(a∈R). (Ⅰ)讨论函数f(x)的单调性. (...

设函数f(x)=x-manfen5.com 满分网-alnx(a∈R).
(Ⅰ)讨论函数f(x)的单调性.
(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2-a?若存在,求出a的值;若不存在,请说明理由.
(Ⅰ)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间; (Ⅱ)假设存在a,使得k=2-a,根据(I)利用韦达定理求出直线斜率为k,根据(I)函数的单调性,推出矛盾,即可解决问题. 【解析】 (I)f(x)定义域为(0,+∞), f′(x)=1+, 令g(x)=x2-ax+1,△=a2-4, ①当-2≤a≤2时,△≤0,f′(x)≥0,故f(x)在(0,+∞)上单调递增, ②当a<-2时,△>0,g(x)=0的两根都小于零,在(0,+∞)上,f′(x)>0,故f(x)在(0,+∞)上单调递增, ③当a>2时,△>0,g(x)=0的两根为x1=,x2=, 当0<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x>x2时,f′(x)>0; 故f(x)分别在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减. (Ⅱ)由(I)知,a>2. 因为f(x1)-f(x2)=(x1-x2)+-a(lnx1-lnx2), 所以k==1+-a, 又由(I)知,x1x2=1.于是 k=2-a, 若存在a,使得k=2-a,则=1,即lnx1-lnx2=x1-x2, 亦即   (*) 再由(I)知,函数在(0,+∞)上单调递增, 而x2>1, 所以>1-1-2ln1=0,这与(*)式矛盾, 故不存在a,使得k=2-a.
复制答案
考点分析:
相关试题推荐
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求manfen5.com 满分网的最小值.
查看答案
某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少.从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.
(Ⅰ)求第n年初M的价值an的表达式;
(Ⅱ)设manfen5.com 满分网,若An大于80万元,则M继续使用,否则须在第n年初对M更新.证明:须在第9年初对M更新.
查看答案
manfen5.com 满分网如图,在圆锥PO中,已知PO=manfen5.com 满分网,⊙OD的直径AB=2,点C在manfen5.com 满分网上,且∠CAB=30°,D为AC的中点.
(Ⅰ)证明:AC⊥平面POD;
(Ⅱ)求直线OC和平面PAC所成角的正弦值.
查看答案
某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
(Ⅰ)完成如下的频率分布表
近20年六月份降雨量频率分布表
降雨量70110140160200220
频率manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.