满分5 > 高中数学试题 >

P(x,y)(x≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线...

P(x,y)(x≠±a)是双曲线E:manfen5.com 满分网上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为manfen5.com 满分网
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足manfen5.com 满分网,求λ的值.
(1)根据P(x,y)(x≠±a)是双曲线E:上一点,代入双曲线的方程,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为,求出直线PM,PN的斜率,然后整体代换,消去x,y,再由c2=a2+b2,即可求得双曲线的离心率; (2)根据过双曲线E的右焦点且斜率为1的直线,写出直线的方程,联立直线与双曲线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,及A,B,C为双曲线上的点,注意整体代换,并代入,即可求得λ的值. 【解析】 (1)∵P(x,y)(x≠±a)是双曲线E:上一点, ∴, 由题意又有, 可得a2=5b2,c2=a2+b2, 则e=, (2)联立,得4x2-10cx+35b2=0, 设A(x1,y1),B(x2,y2), 则x1+x2=,x1•x2=, 设=(x3,y3),, 即 又C为双曲线上一点,即x32-5y32=5b2, 有(λx1+x2)2-5(λy1+y2)2=5b2, 化简得:λ2(x12-5y12)+(x22-5y22)+2λ(x1x2-5y1y2)=5b2, 又A(x1,y1),B(x2,y2)在双曲线上,所以x12-5y12=5b2,x22-5y22=5b2, 而x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2, 得λ2+4λ=0,解得λ=0或-4.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网
(1)若f(x)在manfen5.com 满分网上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]的最小值为manfen5.com 满分网,求f(x)在该区间上的最大值.
查看答案
已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3.
(1)若a=1,求数列{an}的通项公式;
(2)若数列{an}唯一,求a的值.
查看答案
在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1-sinmanfen5.com 满分网
(1)求sinC的值
(2)若 a2+b2=4(a+b)-8,求边c的值.
查看答案
某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资的期望.
查看答案
(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为   
(2)(不等式选做题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.