满分5 > 高中数学试题 >

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车...

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可; (Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论. 【解析】 (Ⅰ)当每辆车的月租金定为3600元时, 未租出的车辆数为, 所以这时租出了88辆车. (Ⅱ)设每辆车的月租金定为x元, 则租赁公司的月收益为, 整理得. 所以,当x=4050时,f(x)最大,最大值为f(4050)=307050, 即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD为矩形,平面ABCD⊥平面ABE,BE=BC,F为CE上的一点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求证:AE∥平面BFD.

manfen5.com 满分网 查看答案
如图:A,B是圆O上的两点,点C是圆O与x轴正半轴的交点,已知A(-3,4),且点B在劣弧CA上,△AOB为正三角形.
(1)求cos∠COA;
(2)求|BC|的值.

manfen5.com 满分网 查看答案
设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n条直线交点个数,则f(4)=    ,当n>4时f(n)=    (用n表示) 查看答案
已知点P在曲线manfen5.com 满分网上移动,若经过点P的曲线的切线的倾斜角为α,则α的取值范围是    查看答案
设命题p:c2<c和命题q:对∀x∈R,x2+4cx+1>0,若p和q有且仅有一个成立,则实数c的取值范围是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.