满分5 > 高中数学试题 >

在数列{an}中,若an2-an-12=p(n≥2,n∈N×,p为常数),则称{...

在数列{an}中,若an2-an-12=p(n≥2,n∈N×,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的判断;
①若{an}是等方差数列,则{an2}是等差数列;
②{(-1)n}是等方差数列;
③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列;
④若{an}既是等方差数列,又是等差数列,则该数列为常数列.
其中正确命题序号为    .(将所有正确的命题序号填在横线上)
根据等差数列的性质及题中的等方差数列的新定义,即可判断出正确的答案. 【解析】 ①因为{an}是等方差数列,所以an2-an-12=p(n≥2,n∈N×,p为常数)成立, 得到{an2}为首项是a12,公差为p的等差数列; ②因为an2-an-12=(-1)2n-(-1)2n-1=1-(-1)=2,所以数列{(-1)n}是等方差数列; ③数列{an}中的项列举出来是:a1,a2,…,ak,ak+1,ak+2,…,a2k,…,a3k,… 数列{akn}中的项列举出来是:ak,a2k,a3k,… 因为ak+12-ak2=ak+22-ak+12=ak+32-ak+22=…=a2k2-ak2=p 所以(ak+12-ak2)+(ak+22-ak+12)+(ak+32-ak+22)+…+(a2k2-a2k-12)=a2k2-ak2=kp, 类似地有akn2-akn-12=akn-12-akn-22=…=akn+32-akn+22=akn+22-akn+12=akn+12-akn2=p 同上连加可得akn+12-akn2=kp,所以,数列{akn}是等方差数列; ④{an}既是等方差数列,又是等差数列,所以an2-an-12=p,且an-an-1=d(d≠0),所以an+an-1=,联立解得an=+, 所以{an}为常数列,当d=0时,显然{an}为常数列,所以该数列为常数列. 综上,正确答案的序号为:①②③④ 故答案为:①②③④
复制答案
考点分析:
相关试题推荐
设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是    查看答案
已知双曲线manfen5.com 满分网左支上一点M到右焦点F的距离为18. N是线段MF的中点,O为坐标原点,则|ON|的值是     查看答案
曲线y=xex+2x+1在点(0,1)处的切线方程为    查看答案
已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值( )
A.恒大于0
B.恒小于0
C.可能等于0
D.可正可负
查看答案
已知F1、F2分别为椭圆manfen5.com 满分网的左右焦点,抛物线C2以F1为顶点,F2为焦点,设P是椭圆与抛物线的一个交点,如果椭圆的离心率e满足|PF1|=e|PF2|,则e=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.