满分5 > 高中数学试题 >

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA...

manfen5.com 满分网在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2manfen5.com 满分网,M为AB的中点.
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小;
(Ⅲ)求点B到平面SCM的距离.
(Ⅰ)欲证AC⊥SB,取AC中点D,连接DS、DB.根据线面垂直的性质定理可知,只须证AC⊥SD且AC⊥DB,即得; (Ⅱ)欲求二面角N-CM-B的大小,可先作出二面角的平面角,结合SD⊥平面ABC.过D作DE⊥CM于E,连接SE,则SE⊥CM, 从而得出∠SED为二面角S-CM-A的平面角.最后在Rt△SDE中求解即可; (Ⅲ)设点B到平面SCM的距离为h,利用等到体积法:VB-SCM=VS-CMB,即可求得点B到平面SCM的距离. 证明:(Ⅰ)取AC中点D,连接DS、DB. ∵SA=SC,BA=BC, ∴AC⊥SD且AC⊥DB, ∴AC⊥平面SDB,又SB⊂平面SDB, ∴AC⊥SB. (Ⅱ)【解析】 ∵SD⊥AC,平面SAC⊥平面ABC, ∴SD⊥平面ABC. 过D作DE⊥CM于E,连接SE,则SE⊥CM, ∴∠SED为二面角S-CM-A的平面角. 由已知有,所以DE=1,又SA=SC=2,AC=4,∴SD=2. 在Rt△SDE中,tan∠SED==2, ∴二面角S-CM-A的大小为arctan2. (Ⅲ)【解析】 在Rt△SDE中,SE=,CM是边长为4正△ABC的中线,. ∴S△SCM=CM•SE=, 设点B到平面SCM的距离为h, 由VB-SCM=VS-CMB,SD⊥平面ABC,得S△SCM•h=S△CMB•SD, ∴h=.即点B到平面SCM的距离为.
复制答案
考点分析:
相关试题推荐
甲、乙、丙三个同学同时报名参加某重点高校2010年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才有参加文化测试,文化测试合格者即获得自主招生入选资格.因为甲、乙、丙三人各在优势,甲、乙、丙三人审核过关的概率分别为0.5,0.6,0.4,审核过关后,甲、乙、丙三人文化测试合格的概率分别为0.6,0.5,0.75.
(1)求甲、乙、丙三人各自获得自主招生入选资格的概率;
(2)求甲、乙、丙三人中获得自主招生入选资格的人数为ξ,求随机变量ξ的期望.
查看答案
在△ABC中,a,b,c分别为角A,B,C所对的边,且满足manfen5.com 满分网
(Ⅰ)求角A的大小;
(Ⅱ)若manfen5.com 满分网,且5sinB=3sinC,求a、b、c的值.
查看答案
在数列{an}中,若an2-an-12=p(n≥2,n∈N×,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的判断;
①若{an}是等方差数列,则{an2}是等差数列;
②{(-1)n}是等方差数列;
③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列;
④若{an}既是等方差数列,又是等差数列,则该数列为常数列.
其中正确命题序号为    .(将所有正确的命题序号填在横线上) 查看答案
设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是    查看答案
已知双曲线manfen5.com 满分网左支上一点M到右焦点F的距离为18. N是线段MF的中点,O为坐标原点,则|ON|的值是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.