满分5 > 高中数学试题 >

设A(x1,y1),B(x2,y2)是椭圆上的两点,已知向量=(,),=(,),...

设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),若manfen5.com 满分网=0且椭圆的离心率e=manfen5.com 满分网,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(1)依题意可求得b,进而根据离心率求得a,则椭圆方程可得. (2)先看当直线AB斜率不存在时,即x1=x2,y1=y2,根据=0代入求得x12-=0把点A代入椭圆方程,求得A点横坐标和纵坐标的绝对值,进而求得△AOB的面积的值;当直线AB斜率存在时:设AB的方程为y=kx+b与椭圆方程联立消去y,根据伟大定理求得x1+x2和x1x2的表达式代入=0中整理可求得2b2-k2=4代入三角形面积公式中求得求得△AOB的面积的值为定值.最后综合可得答案. 【解析】 (1)依题意知2b=2,∴b=1,e=== ∴a=2,c== ∴椭圆的方程为 (2)①当直线AB斜率不存在时,即x1=x2,y1=y2, ∵=0 ∴x12-=0 ∴y12=4x12 又A(x1,y1)在椭圆上,所以x12+=1 ∴|x1|=,|y1|= s=|x1||y1-y2|=1 所以三角形的面积为定值. ②当直线AB斜率存在时:设AB的方程为y=kx+b 消去y得(k2+4)x2+2kbx+b2-4=0 ∴x1+x2=,x1x2=,△=(2kb)2-4(k2+4)(b2-4)>0 而=0, ∴x1x2+=0 即x1x2+=0代入整理得 2b2-k2=4 S=|AB|=|b|= ===1 综上三角形的面积为定值1.
复制答案
考点分析:
相关试题推荐
已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项.
(1)求数列{an}的通项公式
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列manfen5.com 满分网的前n项Tn
查看答案
manfen5.com 满分网在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2manfen5.com 满分网,M为AB的中点.
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小;
(Ⅲ)求点B到平面SCM的距离.
查看答案
甲、乙、丙三个同学同时报名参加某重点高校2010年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才有参加文化测试,文化测试合格者即获得自主招生入选资格.因为甲、乙、丙三人各在优势,甲、乙、丙三人审核过关的概率分别为0.5,0.6,0.4,审核过关后,甲、乙、丙三人文化测试合格的概率分别为0.6,0.5,0.75.
(1)求甲、乙、丙三人各自获得自主招生入选资格的概率;
(2)求甲、乙、丙三人中获得自主招生入选资格的人数为ξ,求随机变量ξ的期望.
查看答案
在△ABC中,a,b,c分别为角A,B,C所对的边,且满足manfen5.com 满分网
(Ⅰ)求角A的大小;
(Ⅱ)若manfen5.com 满分网,且5sinB=3sinC,求a、b、c的值.
查看答案
在数列{an}中,若an2-an-12=p(n≥2,n∈N×,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的判断;
①若{an}是等方差数列,则{an2}是等差数列;
②{(-1)n}是等方差数列;
③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列;
④若{an}既是等方差数列,又是等差数列,则该数列为常数列.
其中正确命题序号为    .(将所有正确的命题序号填在横线上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.