满分5 >
高中数学试题 >
设z是复数,a(z)表示zn=1的最小正整数n,则对虚数单位i,a(i)=( )...
设z是复数,a(z)表示zn=1的最小正整数n,则对虚数单位i,a(i)=( )
A.8
B.6
C.4
D.2
考点分析:
相关试题推荐
本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵
(其中a>0,b>0).
(I)若a=2,b=3,求矩阵M的逆矩阵M
-1;
(II)若曲线C:x
2+y
2=1在矩阵M所对应的线性变换作用下得到曲线C’:
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(I)求集合M;
(II)若a,b∈M,试比较ab+1与a+b的大小.
查看答案
如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=
,∠CDA=45°.
(I)求证:平面PAB⊥平面PAD;
(II)设AB=AP.
(i)若直线PB与平面PCD所成的角为30°,求线段AB的长;
(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.
查看答案
某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准
(1)已知甲厂产品的等级系数X
1的概率分布列如下所示:
且X
1的数字期望EX1=6,求a,b的值;
(II)为分析乙厂产品的等级系数X
2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X
2的数学期望.
(Ⅲ)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注:(1)产品的“性价比”=
;
(2)“性价比”大的产品更具可购买性.
查看答案
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式
,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案
已知直线l:y=x+m,m∈R.
(I)若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,求该圆的方程;
(II)若直线l关于x轴对称的直线为l′,问直线l′与抛物线C:x
2=4y是否相切?说明理由.
查看答案