满分5 > 高中数学试题 >

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列...

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设manfen5.com 满分网,Tn是数列{bn}的前n项和,求使得manfen5.com 满分网对所有n∈N*都成立的最小正整数m;
(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),根据导函数求得f(x)的表达式,再根据点(n,Sn)(n∈N*)均在函数 y=f(x)的图象上,求出an的递推关系式, (Ⅱ)把(1)题中an的递推关系式代入bn,根据裂项相消法求得Tn,最后解得使得对所有n∈N*都成立的最小正整数m. 【解析】 (Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b,由于f′(x)=6x-2,得 a=3,b=-2,所以f(x)=3x2-2x. 又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上, 所以Sn=3n2-2n. 当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5. 当n=1时,a1=S1=3×12-2=6×1-5, 所以,an=6n-5(n∈N*) (Ⅱ)由(Ⅰ)得知==, 故Tn===(1-). 因此,要使(1-)<(n∈N*)成立的m,必须且仅须满足≤,即m≥10, 所以满足要求的最小正整数m为10.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)设ω>0为常数,若y=f(ωx)在区间manfen5.com 满分网上是增函数,求w的取值范围
(2)设集合manfen5.com 满分网,若A⊆B,求实数m的取值范围.
查看答案
解关于x的不等式12x2-ax>a2(a∈R).
查看答案
某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
查看答案
(1).已知函数y=x+manfen5.com 满分网(x>-2),求此函数的最小值.
(2)已知x<manfen5.com 满分网,求y=4x-1+manfen5.com 满分网的最大值;
(3)已知x>0,y>0,且5x+7y=20,求xy的最大值;
(4)已知x,y∈R+且x+2y=1,求manfen5.com 满分网的最小值.
查看答案
已知复数z1=cosα+isinα,z2=cosβ+isinβ,manfen5.com 满分网
求:(1)求cos(α-β)的值;
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sinα的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.