(I)在数列{an}中,把已知条件用首项a1,公差d表示,联立方程可求a1和d;在数列{bn}中,用b1和公比q把已知表示,求出b1和公比q
(II)由(I)可知cn=(2n-1)•2n,利用错位相减求出数列的和
【解析】
(I)公差为d,
则,
∴故an=2n-1(n=1,2,3,…).
设等比数列bn的公比为q,则,∴b3=8,q=2
∴bn=b3•qn-3=2n(n=1,2,3,…).
(II)∵cn=(2n-1)•2n∵Tn=2+3•22+5•23+…+(2n-1)•2n
2Tn=22+3•23+5•24+…+(2n-3)•2n+(2n-1)•2n+1
作差:-Tn=2+23+24+25+…+2n+1-(2n-1)•2n+1
=
=2+23(2n-1-1)-(2n-1)•2n+1=2+2n+2-8-2n+2n+2n+1=-6-2n+1(2n-3)
∴TN=(2n-3)•2n+1+6(n=1,2,3,…).