满分5 > 高中数学试题 >

已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[...

已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.
y=f(x)在区间[-1,1]上有零点转化为(2x2-1)a=3-2x在[-1,1]上有解,把a用x表示出来,转化为求函数在[-1,1]上的值域,再用分离常数法求函数在[-1,1]的值域即可. 【解析】 a=0时,不符合题意,所以a≠0, 又∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解,⇔(2x2-1)a=3-2x在[-1,1]上有解 在[-1,1]上有解,问题转化为求函数[-1,1]上的值域; 设t=3-2x,x∈[-1,1],则2x=3-t,t∈[1,5],, 设,时,g'(t)<0,此函数g(t)单调递减, 时,g'(t)>0,此函数g(t)单调递增, ∴y的取值范围是, ∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解⇔∈⇔a≥1或. 故a≥1或a≤-.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.
(1)求f(x)的单调区间和极大值;
(2)证明对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
查看答案
(1)曲线C:y=ax3+bx2+cx+d在(0,1)点处的切线为l1:y=x+1在(3,4)点处的切线为l2:y=-2x+10,求曲线C的方程;(2)求曲线S:y=2x-x3的过点A(1,1)的切线方程.
查看答案
设a≥0,f (x)=x-1-ln2x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.
查看答案
设函数f(x)=x3+ax2-9x-1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:
(Ⅰ)a的值;
(Ⅱ)函数f(x)的单调区间.
查看答案
在直线轨迹上运行的一列火车,从刹车到停车这段时间内,测得刹车后t秒内列车前进的距离s=27t-0.45t2(单位是米),这列火车在刹车后几秒钟才停车?刹车后又运行了多少米?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.