满分5 > 高中数学试题 >

定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x...

定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.
(1)欲证f(x)为奇函数即要证对任意x都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明. (2)先将不等关系f(k•3x)+f(3x-9x-2)<0转化成f(k•3x)<f(-3x+9x+2),再结合函数的单调性去掉“f”符号,转化为整式不等关系,最后利用分离系数法即可求实数k的取值范围. 【解析】 (1)证明:f(x+y)=f(x)+f(y)(x,y∈R),① 令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即f(0)=0. 令y=-x,代入①式,得f(x-x)=f(x)+f(-x),又f(0)=0,则有 0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数. (2)【解析】 f(3)=log23>0,即f(3)>f(0), 又f(x)在R上是单调函数, 所以f(x)在R上是增函数, 又由(1)f(x)是奇函数. f(k•3x)<-f(3x-9x-2)=f(-3x+9x+2), k•3x<-3x+9x+2, 令t=3x>0,分离系数得:, 问题等价于,对任意t>0恒成立. ∵, ∴.
复制答案
考点分析:
相关试题推荐
已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.
查看答案
已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.
(1)求f(x)的单调区间和极大值;
(2)证明对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
查看答案
(1)曲线C:y=ax3+bx2+cx+d在(0,1)点处的切线为l1:y=x+1在(3,4)点处的切线为l2:y=-2x+10,求曲线C的方程;(2)求曲线S:y=2x-x3的过点A(1,1)的切线方程.
查看答案
设a≥0,f (x)=x-1-ln2x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.
查看答案
设函数f(x)=x3+ax2-9x-1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:
(Ⅰ)a的值;
(Ⅱ)函数f(x)的单调区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.