满分5 > 高中数学试题 >

请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部...

manfen5.com 满分网请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
(1)可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可; (2)利用体积公式表示出包装盒容积V关于x的函数解析式,最后利用导数知识求出何时它取得的最大值即可. 【解析】 设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30-x),0<x<30. (1)S=4ah=8x(30-x)=-8(x-15)2+1800, ∴当x=15时,S取最大值. (2)V=a2h=2(-x3+30x2),V′=6x(20-x), 由V′=0得x=20, 当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0; ∴当x=20时,包装盒容积V(cm3)最大, 此时,. 即此时包装盒的高与底面边长的比值是.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案
在△ABC中,角A、B、C的对边分别为a,b,c
(1)若manfen5.com 满分网,求A的值;
(2)若manfen5.com 满分网,求sinC的值.
查看答案
设集合manfen5.com 满分网,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是    查看答案
设 1=a1≤a2≤…≤a7,其中a1,a3,a5,a7 成公比为q的等比数列,a2,a4,a6 成公差为1的等差数列,则q的最小值是    查看答案
在平面直角坐标系xOy中,已知P是函数f(x)=ex(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.