满分5 > 高中数学试题 >

如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于...

如图,在平面直角坐标系xOy中,M、N分别是椭圆manfen5.com 满分网的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB.

manfen5.com 满分网
(1)由题设写出点M,N的坐标,求出线段MN中点坐标,根据线PA过原点和斜率公式,即可求出k的值; (2)写出直线PA的方程,代入椭圆,求出点P,A的坐标,求出直线AB的方程,根据点到直线的距离公式,即可求得点P到直线AB的距离d; (3)要证PA⊥PB,只需证直线PB与直线AB的斜率之积为-1,根据题意求出它们的斜率,即证的结果. 【解析】 (1)由题设知,a=2,b=, 故M(-2,0),N(0,-),所以线段MN中点坐标为(-1,-). 由于直线PA平分线段MN,故直线PA过线段MN的中点,,又直线PA过原点, 所以k=. (2)直线PA的方程为y=2x,代入椭圆方程得,解得x=±, 因此P(,),A(-,-) 于是C(,0),直线AC的斜率为1,故直线AB的方程为x-y-=0. 因此,d=. (3)设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2, A(-x1,-y1),C(x1,0). 设直线PB,AB的斜率分别为k1,k2. 因为C在直线AB上,所以k2=, 从而kk1+1=2k1k2+1=2•= ==. 因此kk1=-1,所以PA⊥PB.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案
在△ABC中,角A、B、C的对边分别为a,b,c
(1)若manfen5.com 满分网,求A的值;
(2)若manfen5.com 满分网,求sinC的值.
查看答案
设集合manfen5.com 满分网,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是    查看答案
设 1=a1≤a2≤…≤a7,其中a1,a3,a5,a7 成公比为q的等比数列,a2,a4,a6 成公差为1的等差数列,则q的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.