满分5 > 高中数学试题 >

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g...

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[-1,+∞)上单调性一致即f'(x)g'(x)≥0在[-1,+∞)上恒成立,以及3x2+a>0,来求实数b的取值范围; (2)先求出f'(x)=0的根以及g'(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a-b|的最大值. 【解析】 f'(x)=3x2+a,g'(x)=2x+b. (1)由题得f'(x)g'(x)≥0在[-1,+∞)上恒成立.因为a>0,故3x2+a>0, 进而2x+b≥0,即b≥-2x在[-1,+∞)上恒成立,所以b≥2. 故实数b的取值范围是[2,+∞) (2)令f'(x)=0,得x=. 若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0, 所以函数f(x)和g(x)在(a,b)上不是单调性一致的. 因此b≤0. 现设b≤0,当x∈(-∞,0)时,g'(x)<0; 当x∈(-∝,-)时,f'(x)>0. 因此,当x∈(-∝,-)时,f'(x)g'(x)<0.故由题设得a≥-且b≥-, 从而-≤a<0,于是-<b<0,因此|a-b|≤,且当a=-,b=0时等号成立, 又当a=-,b=0时,f'(x)g'(x)=6x(x2-),从而当x∈(-,0)时f'(x)g'(x)>0. 故函数f(x)和g(x)在(-,0)上单调性一致,因此|a-b|的最大值为.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xOy中,M、N分别是椭圆manfen5.com 满分网的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB.

manfen5.com 满分网 查看答案
manfen5.com 满分网请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案
在△ABC中,角A、B、C的对边分别为a,b,c
(1)若manfen5.com 满分网,求A的值;
(2)若manfen5.com 满分网,求sinC的值.
查看答案
设集合manfen5.com 满分网,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.