满分5 > 高中数学试题 >

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,点N是BC...

 如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1-DN-M的大小为θ(1)当θ=90° 时,求AM 的长;
(2)当manfen5.com 满分网 时,求CM 的长.

manfen5.com 满分网
(1)建立如图所示的空间直角坐标系,D-xyz,设CM=t(0≤t≤2),通过,求出平面DMN的法向量为,,求出平面A1DN的法向量为,推出(1)利用θ=90°求出M的坐标,然后求出AM的长. (2)利用cos=以及,求出CM 的长. 【解析】 建立如图所示的空间直角坐标系,D-xyz,设CM=t(0≤t≤2),则各点的坐标为A(1,0,0),A1(1,0,2), N(,1,0),M(0,1,t); 所以=(,1,0).=(1,0,2),=(0,1,t) 设平面DMN的法向量为=(x1,y1,z1),则,, 即x1+2y1=0,y1+tz1=0,令z1=1,则y1=-t,x1=2t所以=(2t,-t,1), 设平面A1DN的法向量为=(x2,y2,z2),则,, 即x2+2z2=0,x2+2y2=0,令z2=1则y2=1,x2=-2所以=(-2,1,1), (1)因为θ=90°,所以 解得t=从而M(0,1,), 所以AM= (2)因为,所以, cos== 因为=θ或π-θ,所以=解得t=0或t= 根据图形和(1)的结论,可知t=,从而CM的长为.
复制答案
考点分析:
相关试题推荐
A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵manfen5.com 满分网,向量manfen5.com 满分网.求向量manfen5.com 满分网,使得A2manfen5.com 满分网=manfen5.com 满分网
C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆manfen5.com 满分网(φ为参数)的右焦点,且与直线manfen5.com 满分网(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

manfen5.com 满分网 查看答案
设M为部分正整数组成的集合,数列{an}的首项a1=1,前n项和为Sn,已知对任意整数k∈M,当整数n>k时,Sn+k+Sn-k=2(Sn+Sk)都成立
(1)设M={1},a2=2,求a5的值;
(2)设M={3,4},求数列{an}的通项公式.
查看答案
已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
查看答案
如图,在平面直角坐标系xOy中,M、N分别是椭圆manfen5.com 满分网的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB.

manfen5.com 满分网 查看答案
manfen5.com 满分网请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.