满分5 > 高中数学试题 >

对于函数f(x),若存在x∈R,使f(x)=x成立,则称x为f(x)的不动点.已...

对于函数f(x),若存在x∈R,使f(x)=x成立,则称x为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+manfen5.com 满分网对称,求b的最小值.
(1)转化为直接解方程x2-x-3=x即可. (2)转化为ax2+bx+b-1=0有两个不等实根,转化为b2-4a(b-1)>0恒成立,再利用二次函数大于0恒成立须满足的条件来求解即可. (3)利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a,b之间的关系式,整理后在利用基本不等式求解可得. 【解析】 (1)∵a=1,b=-2时,f(x)=x2-x-3, f(x)=x⇒x2-2x-3=0⇒x=-1,x=3 ∴函数f(x)的不动点为-1和3; (2)即f(x)=ax2+(b+1)x+b-1=x有两个不等实根, 转化为ax2+bx+b-1=0有两个不等实根,须有判别式大于0恒成立 即b2-4a(b-1)>0⇒△=(-4a)2-4×4a<0⇒0<a<1, ∴a的取值范围为0<a<1; (3)设A(x1,x1),B(x2,x2),则x1+x2=-, A,B的中点M的坐标为  (,),即M(-,-) ∵A、B两点关于直线y=kx+对称, 又因为A,B在直线y=x上, ∴k=-1,A,B的中点M在直线y=kx+上. ∴-=⇒b=-=-利用基本不等式可得 当且仅当a=时,b的最小值为-.
复制答案
考点分析:
相关试题推荐
f(x)为偶函数且定义域为[-1,1],g(x)的图象与f(x)的图象关于直线x=1对称,当x∈[2,3]时,g(x)=2a(x-2)-3(x-2)2,a为实数且manfen5.com 满分网
(1)求f(x)解析式;
(2)求f(x)的单调区间;
(3)若f(x)的最大值为12,求a.
查看答案
已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0对任意实数x,都有f(x)-x≥0,并且当x∈(0,2)时,有manfen5.com 满分网
(1)求f(1)的值;
(2)证明:a>0、c>0;
(3)当x∈[-1,1]时,g(x)=f(x)-mx(m∈R)是单调的,求证:m≤0或m≥1.
查看答案
已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围.
查看答案
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.
查看答案
已知f(x)=ax2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值为manfen5.com 满分网,最小值为manfen5.com 满分网,求证:manfen5.com 满分网
(2)当manfen5.com 满分网时,对于给定的负数a,有一个最大的正数m(a),使得x∈[0,m(a)]时都有|f(x)|≤5,问a为何值时,m(a)最大,并求这个最大值m(a),证明你的结论.
(3)若f(x)同时满足下列条件:①a>0;②当|x|≤2时,有|f(x)|≤2;③当|x|≤1时,f(x)最大值为2,求f(x)的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.