对于函数f(x),若存在x
∈R,使f(x
)=x
成立,则称x
为f(x)的不动点.已知f(x)=ax
2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的范围;
(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+
对称,求b的最小值.
考点分析:
相关试题推荐
f(x)为偶函数且定义域为[-1,1],g(x)的图象与f(x)的图象关于直线x=1对称,当x∈[2,3]时,g(x)=2a(x-2)-3(x-2)
2,a为实数且
;
(1)求f(x)解析式;
(2)求f(x)的单调区间;
(3)若f(x)的最大值为12,求a.
查看答案
已知二次函数f(x)=ax
2+bx+c(a≠0)且满足f(-1)=0对任意实数x,都有f(x)-x≥0,并且当x∈(0,2)时,有
(1)求f(1)的值;
(2)证明:a>0、c>0;
(3)当x∈[-1,1]时,g(x)=f(x)-mx(m∈R)是单调的,求证:m≤0或m≥1.
查看答案
已知二次函数f(x)=4x
2-2(p-2)x-2p
2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围.
查看答案
已知二次函数f(x)=ax
2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.
查看答案
已知f(x)=ax
2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值为
,最小值为
,求证:
(2)当
时,对于给定的负数a,有一个最大的正数m(a),使得x∈[0,m(a)]时都有|f(x)|≤5,问a为何值时,m(a)最大,并求这个最大值m(a),证明你的结论.
(3)若f(x)同时满足下列条件:①a>0;②当|x|≤2时,有|f(x)|≤2;③当|x|≤1时,f(x)最大值为2,求f(x)的解析式.
查看答案