满分5 > 高中数学试题 >

已知函数f(x)(x∈R)满足下列条件:对任意的实数x1,x2都有λ(x1-x2...

已知函数f(x)(x∈R)满足下列条件:对任意的实数x1,x2都有λ(x1-x22≤(x1-x2)[f(x1)-f(x2)]和|f(x1)-f(x2)|≤|x1-x2|,其中λ是大于0的常数,设实数a,a,b满足f(a)=0和b=a-λf(a)
(Ⅰ)证明λ≤1,并且不存在b≠a,使得f(b)=0;
(Ⅱ)证明(b-a2≤(1-λ2)(a-a2
(Ⅰ)要证明λ≤1,并且不存在b≠a,使得f(b)=0,由已知条件λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]和|f(x1)-f(x2)|≤|x1-x2|合并,可以直接得出λ≤1,再假设有b≠a,使得f(b)=0,根据已知判断出矛盾即得到不存在b≠a,使得f(b)=0. (Ⅱ)要证明(b-a)2≤(1-λ2)(a-a)2;把不等式两边(b-a)2和(1-λ2)(a-a)2分别用题中的已知等式化为同一的函数值得形式,再证明不等式成立即可. 证明:(I)任取x1,x2⊂R,x1≠x2,则由λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]① 和|f(x1)-f(x2)|≤|x1-x2|② 可知λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]≤|x1-x2|•|f(x1)-f(x2)|≤|x1-x2|2, 从而λ≤1. 假设有b≠a,使得f(b)=0,则由①式知0<λ(a-b)2≤(a-b)[f(a)-f(b)]=0矛盾. ∴不存在b≠a,使得f(b)=0. (II)由b=a-λf(a)③ 可知(b-a)2=[a-a-λf(a)]2=(a-a)2-2λ(a-a)f(a)+λ2[f(a)]2④ 由f(a)=0和①式,得(a-a)f(a)=(a-a)[f(a)-f(a)]≥λ(a-a)2⑤ 由和②式知,[f(a)]2=[f(a)-f(a)]2≤(a-a)2⑥ 由⑤、⑥代入④式,得(b-a)2≤(a-a)2-2λ2(a-a)2+λ2(a-a)2=(1-λ2)(a-a)2 即不等式(b-a)2≤(1-λ2)(a-a)2得证.
复制答案
考点分析:
相关试题推荐
已知数列{an}的通项为an,前n项和为sn,且an是sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(Ⅰ)求数列{an}、{bn}的通项公式an,bn
(Ⅱ)设{bn}的前n项和为Bn,试比较manfen5.com 满分网与2的大小.
(Ⅲ)设Tn=manfen5.com 满分网,若对一切正整数n,Tn<c(c∈Z)恒成立,求c的最小值.
查看答案
设p=(log2x)2+(t-2)log2x-t+1,若t在区间[-2,2]上变动时,p恒为正值,试求x的取值范围.
查看答案
数列{xn}由下列条件确定:x1=a>0,xn+1=manfen5.com 满分网,n∈N.
(Ⅰ)证明:对n≥2,总有xnmanfen5.com 满分网
(Ⅱ)证明:对n≥2,总有xn≥xn+1
(Ⅲ)若数列{xn}的极限存在,且大于零,求manfen5.com 满分网xn的值.
查看答案
解关于x的不等式manfen5.com 满分网>a-ax(a>0且a≠1).
查看答案
求a,b的值,使得关于x的不等式ax2+bx+a2-1≤0的解集分别是:(1)[-1,2];(2)(-∞,-1]∪[2,+∞);(3){2};(4)[-1,+∞).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.