已知函数f(x)=ax
2+4(a为非零实数),设函数F(x)=
.
(1)若f(-2)=0,求F(x)的表达式;
(2)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?
考点分析:
相关试题推荐
沪杭高速公路全长166千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶到杭州.已知该汽车每小时的运输成本y(以元为单元)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.02;固定部分为200元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?
查看答案
若a
1>0,a
1≠1,a
n+1=
(n=1,2,…)
(1)求证:a
n+1≠a
n;
(2)令a
1=
,写出a
2、a
3、a
4、a
5的值,观察并归纳出这个数列的通项公式a
n.
查看答案
已知f(x)=-3x
2+a(6-a)x+b.
(1)解关于a的不等式f(1)>0;
(2)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值.
查看答案
已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则下列说法正确的是
.
①2a-3b+1>0;
②a≠0时,
有最小值,无最大值;
③∃M∈R
+,使
>M恒成立;
④当a>0且a≠1,b>0时,则
的取值范围为(-∞,-
)∪(
,+∞).
查看答案
某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为
元.
查看答案