满分5 > 高中数学试题 >

[文]已知不等式x2+px+1>2x+p. (1)如果不等式当|p|≤2时恒成立...

[文]已知不等式x2+px+1>2x+p.
(1)如果不等式当|p|≤2时恒成立,求x的范围;
(2)如果不等式当2≤x≤4时恒成立,求p的范围.
(1)是对|p|≤2时恒成立,可看作关于p的一次不等式恒成立,只要两端点满足要求即可; (2)是对2≤x≤4时恒成立,可用分离参数求最值,或者转化为二次函数求最值,结合二次函数图象解决即可. 【解析】 (1)原不等式为(x-1)p+(x-1)2>0, x=1时,有(x-1)p+(x-1)2=0,不等式不成立, 则必有x≠1, x≠1时,令f(p)=(x-1)p+(x-1)2,f(p)是关于p的一次函数, 此时其定义域为[-2,2],由一次函数的单调性知, 解得x<-1或x>3. 即x的取值范围是{x|x<-1或x>3}. (2)不等式可化为(x-1)p>-x2+2x-1, ∵2≤x≤4,∴x-1>0. ∴p>=1-x. 对x∈[2,4]恒成立, 所以p>(1-x)max. 当2≤x≤4时,(1-x)max=-1, 于是p>-1.故p的范围是{p|p>-1}.
复制答案
考点分析:
相关试题推荐
[理]已知函数f(x)=ax-manfen5.com 满分网-2lnx,f(1)=0.
(1)若函数f(x)在其定义域内为单调函数,求a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(manfen5.com 满分网)-n2+1,已知a1=4,求证:an≥2n+2.
查看答案
某工艺品加工厂准备生产具有收藏价值的奥运会标志--“中国印•舞动的北京”和奥运会吉祥物--“福娃”.该厂所用的主要原料为A、B两种贵金属,已知生产一套奥运会标志需用原料A和原料B的量分别为4盒和3盒,生产一套奥运会吉祥物需用原料A和原料B的量分别为5盒和10盒.若奥运会标志每套可获利700元,奥运会吉祥物每套可获利1200元,该厂月初一次性购进原料A、B的量分别为200盒和300盒.问该厂生产奥运会标志和奥运会吉祥物各多少套才能使该厂月利润最大?最大利润为多少?
查看答案
已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=manfen5.com 满分网
(1)若f(-2)=0,求F(x)的表达式;
(2)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?
查看答案
沪杭高速公路全长166千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶到杭州.已知该汽车每小时的运输成本y(以元为单元)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.02;固定部分为200元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?
查看答案
若a1>0,a1≠1,an+1=manfen5.com 满分网(n=1,2,…)
(1)求证:an+1≠an
(2)令a1=manfen5.com 满分网,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.