满分5 > 高中数学试题 >

某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外75...

某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).
(1)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表1:
manfen5.com 满分网
表2:
manfen5.com 满分网
①先确定x、y,再完成频率分布直方图,就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
manfen5.com 满分网

②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).
(1)根据随机抽样中各个个体被抽到的可能性均相等,可以得出甲、乙两工人分别被抽到的概率,再根据独立事件概率的计算公式求得结果; (2)①利用分层抽样的思想确定出A类工人和B类工人分别被抽查到的人数,然后根据统计表格利用方程确定出x,y的值,完成频率分布直方图,通过频率分布直方图判断出A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小; ②利用频率分布直方图各组小长方形上端的中点横坐标作为该组的生产能力估计值,各组的频率值作为近似的概率值利用均值的计算公式估算出他们的生产能力平均数. 【解析】 (1)甲、乙被抽到的概率均为,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为P=×=. (2)①由题意知A类工人中应抽查25名,B类工人中应抽查75名. 故4+8+x+5+3=25,得x=5, 6+y+36+18=75,得y=15. 频率分布直方图如下: 从直方图可以判断:B类工人中个体间的差异程度更小. ②A=×105+×115+×125+×135+×145=123, B=×115+×125+×135+×145=133.8, =×123+×133.8=131.1. A类工人生产能力的平均数、B类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.
复制答案
考点分析:
相关试题推荐
若样本a1,a2,…,an的平均数manfen5.com 满分网=5,方差s2=0.025,则样本4a1、4a2,…,4an的平均数是    ,方差是    查看答案
已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:manfen5.com 满分网
若y对x呈线性相关关系,相关信息列表如下:
manfen5.com 满分网
则(1)线性回归方程y=bx+a的回归系数a=    b=   
(2)估计使用年限为10年时,维修费用是    万元. 查看答案
数据70、71、72、73的标准差是    查看答案
经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多    人. 查看答案
为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有   
①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.