设点M的坐标为(x,y),欲求动点M的轨迹方程,即寻找x,y间的关系式,结合题中条件列式化简即可得;最后对参数λ分类讨论看方程表示什么曲线即可.
【解析】
如图,设MN切圆于N,则动点M组成的集合是
P={M||MN|=λ|MQ|},式中常数λ>0.因为圆的半径|ON|=1,所以|MN|2=|MO|2-|ON|2=|MO|2-1.设点M的坐标为(x,y),则
整理得(λ2-1)(x2+y2)-4λ2x+(1+4λ2)=0.
经检验,坐标适合这个方程的点都属于集合P.故这个方程为所求的轨迹方程.
当λ=1时,方程化为x=,它表示一条直线,该直线与x轴垂直且交x轴于点(,0),
当λ≠1时,方程化为(x-)2+y2=它表示圆,该圆圆心的坐标为(,0),半径为