满分5 > 高中数学试题 >

已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下...

已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
(1)利用直线l1过点(-3,-1),直线l1与l2垂直,斜率之积为-1,得到两个关系式,求出a,b的值. (2)类似(1)直线l1与直线l2平行,斜率相等,坐标原点到l1,l2的距离相等,利用点到直线的距离相等.得到关系,求出a,b的值. 【解析】 (1)∵l1⊥l2, ∴a(a-1)+(-b)•1=0,即a2-a-b=0① 又点(-3,-1)在l1上, ∴-3a+b+4=0② 由①②得a=2,b=2. (2)∵l1∥l2,∴=1-a,∴b=, 故l1和l2的方程可分别表示为: (a-1)x+y+=0,(a-1)x+y+=0, 又原点到l1与l2的距离相等. ∴4||=||,∴a=2或a=, ∴a=2,b=-2或a=,b=2.
复制答案
考点分析:
相关试题推荐
已知直线l的方程为3x+4y-12=0,求满足下列条件的直线l′的方程.
(1)l′与l平行且过点(-1,3);
(2)l′与l垂直且l′与两坐标轴围成的三角形面积为4;
(3)l′是l绕原点旋转180°而得到的直线.
查看答案
已知直线(m+2)x-(2m-1)y-3(m-4)=0.
(1)求证:不论m怎样变化,直线恒过定点;
(2)求原点(0,0)到直线的距离的最大值.
查看答案
已知平面上一点M(5,0),若直线上存在点P使|PM|=4,则称该直线为“切割型直线”,下列直线中是“切割型直线”的是    (填上所有正确答案的序号).
①y=x+1;②y=2;③y=manfen5.com 满分网x. 查看答案
设直线l经过点(-1,1),则当点(2,-1)与直线l的距离最大时,直线l的方程为    查看答案
已知直线l1:kx-y+1-k=0与l2:ky-x-2k=0的交点在第一象限,则实数k的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.