满分5 > 高中数学试题 >

已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+...

已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.
法一如图,若直线l的斜率不存在,直线l的斜率存在,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程. 法二:求出平行线之间的距离,结合|AB|=5,设直线l与直线l1的夹角为θ,求出直线l的倾斜角为0°或90°,然后得到直线方程.就是用l1、l2之间的距离及l与l1夹角的关系求解. 法三:设直线l1、l2与l分别相交于A(x1,y1),B(x2,y2), 则通过求出y1-y2,x1-x2的值确定直线l的斜率(或倾斜角),从而求得直线l的方程. 【解析】 解法一:若直线l的斜率不存在,则直线l的方程为x=3, 此时与l1、l2的交点分别为A′(3,-4)或B′(3,-9), 截得的线段AB的长|AB|=|-4+9|=5,符合题意. 若直线l的斜率存在,则设直线l的方程为y=k(x-3)+1. 解方程组得 A(,-). 解方程组得 B(,-). 由|AB|=5. 得(-)2+(-+)2=52. 解之,得k=0,直线方程为y=1. 综上可知,所求l的方程为x=3或y=1. 解法二:由题意,直线l1、l2之间的距离为d==, 且直线L被平行直线l1、l2所截得的线段AB的长为5, 设直线l与直线l1的夹角为θ,则sinθ==,故θ=45°. 由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°, 又由直线l过点P(3,1),故直线l的方程为:x=3或y=1. 解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0. 两式相减,得(x1-x2)+(y1-y2)=5.① 又(x1-x2)2+(y1-y2)2=25.② 联立①、②可得或 由上可知,直线l的倾斜角分别为0°或90°. 故所求的直线方程为x=3或y=1.
复制答案
考点分析:
相关试题推荐
已知A(1,2),B(3,4),直线l1:x=0,l2:y=0和l3:x+3y-1=0、设Pi是li(i=1,2,3)上与A、B两点距离平方和最小的点,则△P1P2P3的面积是    查看答案
直线l过点(1,0),且被两平行直线3x+y-6=0和3x+y+3=0所截得的线段长为9,则直线l的方程为    查看答案
点(4,t)到直线4x-3y=1的距离不大于3,则t的取值范围是( )
A.manfen5.com 满分网≤t≤manfen5.com 满分网
B.0<t<10
C.0≤t≤10
D.t<0或t>10
查看答案
已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足为P(1,p),则m-n+p的值是( )
A.24
B.20
C.0
D.-4
查看答案
已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为( )
A.1
B.manfen5.com 满分网
C.manfen5.com 满分网
D.2
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.