满分5 > 高中数学试题 >

设a为实数,函数f(x)=x2+|x-a|+1,x∈R (1)讨论f(x)的奇偶...

设a为实数,函数f(x)=x2+|x-a|+1,x∈R
(1)讨论f(x)的奇偶性;
(2)求f(x)的最小值.
第一问考查函数的奇偶性,用特殊值法判断函数及不是奇函数又不是偶函数;第二问是求最值的题目,先判断函数的单调性再求最值. 【解析】 (1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x) 此时,f(x)为偶函数 当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(a)≠f(-a),f(a)≠-f(-a) 此时f(x)既不是奇函数,也不是偶函数 (2)①当x≤a时, 当,则函数f(x)在(-∞,a]上单调递减,从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1. 若,则函数f(x)在(-∞,a]上的最小值为,且. ②当x≥a时,函数 若,则函数f(x)在(-∞,a]上的最小值为,且 若,则函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1. 综上,当时,函数f(x)的最小值为 当时,函数f(x)的最小值为a2+1 当时,函数f(x)的最小值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化.面与面所成的二面角恒大于90°.
查看答案
甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.
(1)甲、乙开始运动后几分钟相遇?
(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?
查看答案
如图,某地一天从6时至14时的温度变化曲线近似满足函数y=Asin(ωx+∅)+b.
(1)求这段时间的最大温差;
(2)写出这段时间的函数解析式.

manfen5.com 满分网 查看答案
对于顶点在原点的抛物线,给出下列条件:
①焦点在y轴上;
②焦点在x轴上;
③抛物线上横坐标为1的点到焦点的距离等于6;
④抛物线的通径的长为5;
⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).
能满足此抛物线方程y2=10x的条件是     (要求填写合适条件的序号). 查看答案
在(x2+1)(x-2)7的展开式中x3的系数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.