满分5 > 高中数学试题 >

某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了...

某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(I)求课外兴趣小组中男、女同学的人数;
(II)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学分别去做某项试验,求选出的两名同学中恰有一名女同学的概率;
(III)两名同学的试验结束后,男同学做试验得到的试验数据为68、70、71、72、74,女同学做试验得到的试验数据为69、70、70、72、74,请问哪位同学的试验更稳定?并说明理由.
(1)按照分层抽样的按比例抽取的方法,男女生抽取的比例是45:15,4人中的男女抽取比例也是45:15,从而解决; (2)先算出选出的两名同学的基本事件数,再算出恰有一名女同学事件数,两者比值即为所求概率; (3)欲问哪位同学的试验更稳定,只要算出他们各自的方差比较大小即可. 【解析】 (I) ∴每个同学被抽到的概率为(2分) 课外兴趣小组中男、女同学的人数分别为3,1(4分) (II)把3名男同学和1名女同学记为a1,a2,a3,b, 则选取两名同学的基本事件有(a1,a2),(a1,a3),(a2,a3),(a1,b),(a2,b),(a3,b),共6种, 其中有一名女同学的有3种 ∴选出的两名同学中恰有一名女同学的概率为(8分) (III), ∴,, ∴女同学的实验更稳定(12分)
复制答案
考点分析:
相关试题推荐
某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.
查看答案
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日    期12月1日12月2日12月3日12月4日12月5日
温差x(°C)101113128
发芽数y(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程manfen5.com 满分网
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
查看答案
已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域manfen5.com 满分网内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18]如图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.
(2)设m,n表示该班两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18]求事件“|m-n|>2”的概率.

manfen5.com 满分网 查看答案
给出下列命题:
①命题“∃x∈R,使得x2+x+1<0”的非命题是“对∀x∈R,都有x2+x+1>0”;
②独立性检验显示“患慢性气管炎和吸烟有关”,这就是“有吸烟习惯的人,必定会患慢性气管炎”;
③某校有高一学生300人,高二学生270人,高三学生210人,现教育局欲用分层抽样的方法,抽取26名学生进行问卷调查,则高三学生被抽到的概率最小.
其中错误的命题序号是    (将所有错误命题的序号都填上). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.