设M(x,y),B(x1,y1),C(x2,y2),由题意知x1+x2=2x,y1+y2=2y=2y,x12+y12=9,x22+y22=9,再由PB⊥PC,得到x1x2+y1y2-2(y1+y2)-(x1+x2)+5=0,由此可知M轨迹方程.
【解析】
设M(x,y),B(x1,y1),C(x2,y2),
则x1+x2=2x,y1+y2=2y=2y,且x12+y12=9,x22+y22=9,
所以(x1+x2)2=x12+x22+2x1x2,(y1+y2)2=y12+y22+2y1y2,
上两式相加,得(2x)2+(2y)2=9+9+2x1x2+2y1y2,所以x1x2+y1y2=2x2+2y2-9
又PB⊥PC,所以,
得到x1x2+y1y2-2(y1+y2)-(x1+x2)+5=0,
代入得2x2+2y2-9-4y-2x+5=0,
所以M轨迹方程为x2+y2-x-2y-2=0.