满分5 > 高中数学试题 >

已知函数 (1)讨论函数f(x)的极值情况; (2)设g(x)=ln(x+1),...

已知函数manfen5.com 满分网
(1)讨论函数f(x)的极值情况;
(2)设g(x)=ln(x+1),当x1>x2>0时,试比较f(x1-x2)与g(x1-x2)及g(x1)-g(x2)三者的大小;并说明理由.
(1)对函数求导,分别令f′(x)>0,f′(x)<0,求解函数的单调区间,结合函数的单调性,求函数的极值 (2)当x1>x2>0时,要比较①f(x1-x2)=,②g(x1-x2)=ln(x1-x2+1)及③g(x1)-g(x2)=ln(x1+1)-ln(1+x2)的大.比较①与②,利用构造函数h(x)=ex-1-ln(1+x),(x>0),通过研究研究函数的单调性来比较.比较②与③,利用做差比较大小. 【解析】 (1)【解析】 当x>0时,f(x)=ex-1在(0,+∞)单调递增,且f(x)>0; 当x≤0时,f'(x)=x2+2mx. ①若m=0,f′(x)=x2≥0,f(x)=在(-∞,0)上单调递增,且. 又f(0)=0,∴f(x)在R上是增函数,无极植; ②若m<0,f′(x)=x(x+2m)>0,则f(x)=在(-∞,0)单调递增,同①可知f(x)在R上也是增函数,无极值;(4分) ③若m>0,f(x)在(-∞,-2m)上单调递增,在(-2m,0)单调递减, 又f(x)在(0,+∞)上递增,故f(x)有极小值f(0)=0,(6分) (2)【解析】 当x>0时,先比较ex-1与ln(x+1)的大小, 设h(x)=ex-1-ln(x+1)(x>0) h′(x)=恒成立 ∴h(x)在(0,+∞)是增函数,h(x)>h(0)=0 ∴ex-1-ln(x+1)>0即ex-1>ln(x+1) 也就是f(x)>g(x),对任意x>0成立. 故当x1-x2>0时,f(x1-x2)>g(x1-x2)(10分) 再比较g(x1-x2)=ln(x1-x2+1)与g(x1)-g(x2)=ln(x1+1)-ln(x2+1)的大小. g(x1-x2)-[g(x1)-g(x2)] =ln(x1-x2+1)-ln(x1+1)+ln(x2+1) = ∴g(x1-x2)>g(x1)-g(x2) ∴f(x1-x2)>g(x1-x2)>g(x1)-g(x2).(13分)
复制答案
考点分析:
相关试题推荐
设G、M分别是△ABC的重心和外心,A(0,-a),B(0,a)(a>0),且manfen5.com 满分网
(1)求点C的轨迹方程;
(2)是否存在直线m,使m过点(a,0)并且与点C的轨迹交于P、Q两点,且manfen5.com 满分网?若存在,求出直线m的方程;若不存在,请说明理由.
查看答案
已知二次函数f(x)=x2-ax+a(a≠0),不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和为Sn=f(n).
(1)求数列{an}的通项公式;
(2)设各项均不为0的数列{cn}中,满足ci•ci+1<0的正整数i的个数称作数列{cn}的变号数,令manfen5.com 满分网,求数列{cn}的变号数.
查看答案
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=manfen5.com 满分网AD,
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A-CD-E的余弦值.

manfen5.com 满分网 查看答案
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)有三人参加抽奖,要使至少一人获奖的概率不低于manfen5.com 满分网,则“海宝”卡至少多少张?
(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.
查看答案
已知A、B、C是△ABC三内角,向量manfen5.com 满分网=(-1,manfen5.com 满分网),manfen5.com 满分网=(cosA,sinA),且manfen5.com 满分网
(Ⅰ)求角A
(Ⅱ)若manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.