满分5 > 高中数学试题 >

已知函数f(x)=|x-a|. (1)若不等式f(x)≤3的解集为{x|-1≤x...

已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
(1)不等式f(x)≤3就是|x-a|≤3,求出它的解集,与{x|-1≤x≤5}相同,求实数a的值; (2)在(1)的条件下,f(x)+f(x+5)≥m对一切实数x恒成立,根据f(x)+f(x+5)的最小值≥m,可求实数m的取值范围. 【解析】 (1)由f(x)≤3得|x-a|≤3, 解得a-3≤x≤a+3. 又已知不等式f(x)≤3的解集为{x|-1≤x≤5}, 所以解得a=2.(6分) (2)当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5), 于是 所以当x<-3时,g(x)>5; 当-3≤x≤2时,g(x)=5; 当x>2时,g(x)>5. 综上可得,g(x)的最小值为5. 从而,若f(x)+f(x+5)≥m 即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].(12分)
复制答案
考点分析:
相关试题推荐
不等式|2x-1|<3的解集为     查看答案
(陕西卷理15A)不等式|x+3|-|x-2|≥3的解集为    查看答案
已知一列椭圆manfen5.com 满分网.n=1,2….若椭圆Cn上有一点Pn,使Pn到右准线ln的距离dn是{pnFn}与{PnGn}的等差中项,其中Fn、Gn分别是Cn的左、右焦点.
(I)试证:manfen5.com 满分网(n≥1);
(II)取manfen5.com 满分网,并用Sn表示△PnFnGn的面积,试证:S1<S2且Sn>Sn+1(n≥3).

manfen5.com 满分网 查看答案
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x,使得f(x)=x,求函数f(x)的解析表达式.
查看答案
已知函数f(x)=(x2+bx+c)e2,其中b,c∈R为常数.
(I)若b2>4c-1,讨论函数f(x)的单调性;
(II)若b2≤4(c-1),且manfen5.com 满分网,试证:-6≤b≤2.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.