满分5 > 高中数学试题 >

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*. (Ⅰ)证明数...

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
(Ⅰ)整理题设an+1=4an-3n+1得an+1-(n+1)=4(an-n),进而可推断数列{an-n}是等比数列. (Ⅱ)由(Ⅰ)可数列{an-n}的通项公式,进而可得{an}的通项公式根据等比和等差数列的求和公式,求得Sn. (Ⅲ)把(Ⅱ)中求得的Sn代入Sn+1-4Sn整理后根据证明原式. 【解析】 (Ⅰ)证明:由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*. 又a1-1=1,所以数列{an-n}是首项为1,且公比为4的等比数列. (Ⅱ)由(Ⅰ)可知an-n=4n-1,于是数列{an}的通项公式为an=4n-1+n. 所以数列{an}的前n项和. (Ⅲ)证明:对任意的n∈N*,=. 所以不等式Sn+1≤4Sn,对任意n∈N*皆成立.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(Ⅰ)求PB和平面PAD所成的角的大小;
(Ⅱ)证明AE⊥平面PCD;
(Ⅲ)求二面角A-PD-C的大小.

manfen5.com 满分网 查看答案
已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为红球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率.
查看答案
在△ABC中,已知AC=2,BC=3,manfen5.com 满分网
(Ⅰ)求sinB的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有    种(用数字作答).
manfen5.com 满分网 查看答案
在△ABC中,AB=2,AC=3,D是边BC的中点,则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.