满分5 > 高中数学试题 >

如图所示,在四边形ABCD中,EF∥BC,FG∥AD,则= .

manfen5.com 满分网如图所示,在四边形ABCD中,EF∥BC,FG∥AD,则manfen5.com 满分网=   
根据两条直线平行,得到平行线所截的对应线段成比例,得到两个比例式,把要求的两个比值的变化为同一条直线上的线段之间的关系,合并同类项得到一个分子和分母相等的分式,得到结果. 【解析】 ∵EF∥BC, ∴ ∵FG∥AD, ∴, ∴== 故答案为:1
复制答案
考点分析:
相关试题推荐
已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为    
manfen5.com 满分网 查看答案
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记manfen5.com 满分网,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
查看答案
设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且manfen5.com 满分网,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.
查看答案
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
查看答案
如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB=90°.
(Ⅰ)求证:AC⊥BM;
(Ⅱ)求二面角M-AB-C的大小;
(Ⅲ)求多面体PMABC的体积.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.