满分5 > 高中数学试题 >

已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,...

manfen5.com 满分网已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥DE交CB延长线于点F.若manfen5.com 满分网,求EF的长.
Rt△CBP中,由勾股定理求得⊙P的半径BP,再由直角三角形CBP和CEF相似,对应边成比例得 =,求出EF的长. 【解析】 设⊙P 的半径为 r,Rt△CBP中,由勾股定理得  8+r2=(2+r)2, ∴r=1. 由Rt△CBP和R t△CEF相似可得 =,即 =, ∴.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于    查看答案
manfen5.com 满分网如图所示,在四边形ABCD中,EF∥BC,FG∥AD,则manfen5.com 满分网=    查看答案
已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为    
manfen5.com 满分网 查看答案
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记manfen5.com 满分网,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
查看答案
设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且manfen5.com 满分网,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.