满分5 > 高中数学试题 >

已知双曲线的两个焦点为 的曲线C上. (Ⅰ)求双曲线C的方程; (Ⅱ)记O为坐标...

已知双曲线manfen5.com 满分网的两个焦点为manfen5.com 满分网
的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为manfen5.com 满分网,求直线l的方程.
(1)根据题意可得a2+b2=4,得到a和b的关系,把点(3,)代入双曲线方程,求得a,进而根据a2+b2=4求得b,双曲线方程可得. (2)可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,根据直线I与双曲线C相交于不同的两点E、F,进而可得k的范围,设E(x1,y1),F(x2,y2),根据韦达定理可求得x1+x2和x1x2,进而表示出|EF|和原点O到直线l的距离根据三角形OEF的面积求得k,进而可得直线方程. 【解析】 (Ⅰ):依题意,由a2+b2=4,得双曲线方程为(0<a2<4), 将点(3,)代入上式,得.解得a2=18(舍去)或a2=2, 故所求双曲线方程为. (Ⅱ):依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理, 得(1-k2)x2-4kx-6=0. ∵直线I与双曲线C相交于不同的两点E、F, ∴ ∴k∈(-)∪(1,). 设E(x1,y1),F(x2,y2),则由①式得x1+x2=, 于是,|EF|= = 而原点O到直线l的距离d=, ∴S△OEF=. 若S△OEF=,即,解得k=±, 满足②.故满足条件的直线l有两条,其方程分别为y=和.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?
查看答案
如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,求证:θ+φ=manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数f(x)=x3+mx2-m2x+1(m为常数,且m>0)有极大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率为-5的直线是曲线y=f(x)的切线,求此直线方程.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)将函数f(x)化简成Asin(ωx+φ)+B(A>0,φ>0,φ∈[0,2π))的形式,并指出f(x)的周期;
(Ⅱ)求函数manfen5.com 满分网上的最大值和最小值
查看答案
manfen5.com 满分网的圆心坐标为    ,和圆C关于直线x-y=0对称的圆C′的普通方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.