满分5 > 高中数学试题 >

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点. (Ⅰ)求...

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
(Ⅰ)先求导,再由x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点即求解. (Ⅱ)由(Ⅰ)确定f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞)再由f′(x)>0和f′(x)<0求得单调区间. (Ⅲ)由(Ⅱ)知,f(x)在(-1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0,可得f(x)的极大值为f(1),极小值为f(3)一,再由直线y=b与函数y=f(x)的图象有3个交点则须有f(3)<b<f(1)求解,因此,b的取值范围为(32ln2-21,16ln2-9). 【解析】 (Ⅰ)因为 所以 因此a=16 (Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞) 当x∈(-1,1)∪(3,+∞)时,f′(x)>0 当x∈(1,3)时,f′(x)<0 所以f(x)的单调增区间是(-1,1),(3,+∞)f(x)的单调减区间是(1,3) (Ⅲ)由(Ⅱ)知,f(x)在(-1,1)内单调增加, 在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0 所以f(x)的极大值为f(1)=16ln2-9,极小值为f(3)=32ln2-21 因此f(16)=162-10×16>16ln2-9=f(1)f(e-2-1)<-32+11=-21<f(3) 所以在f(x)的三个单调区间(-1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1) 因此,b的取值范围为(32ln2-21,16ln2-9).
复制答案
考点分析:
相关试题推荐
设函数f(x)=ax3+bx2-3a2x+1(a,b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2.
(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;
(Ⅱ)若a>0,求b的取值范围.
查看答案
已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)当a=-manfen5.com 满分网时,讨论函数f(x)的单调性;
(2)若函数f(x)仅在x=0处有极值,求a的取值范围.
查看答案
已知函数f(x)=x3+mx2-m2x+1(m为常数,且m>0)有极大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率为-5的直线是曲线y=f(x)的切线,求此直线方程.
查看答案
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•…•xn的值为    查看答案
如图,函数F(x)=f(x)+manfen5.com 满分网x2的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.