(1)根据(n+1)an,(n+2)an+1,n成等差数列可知(n+2)an+1=(n+1)an+,把这一关系式代入中,进而可推知
=,进而可证明数列{bn}是等比数列
(2)根据(1)中数列{bn}是等比数列可求得数列{bn}的通项公式,依据bn=(n+1)an-n+2,进而可求{an}的通项公式.
(1)证明:由已知得(n+2)an+1=(n+1)an+,
∵b1=2a1-1+2=-1,
∴=
=
=
=
∴数列{bn}是等比数列
(2)由(1)得bn=-()n-1,即(n+1)an-n+2
=-()n-1.
∴an=-()n-1+.