满分5 > 高中数学试题 >

已知函数f(x)=-x3+3x2+9x+a. (I)求f(x)的单调递减区间; ...

已知函数f(x)=-x3+3x2+9x+a.
(I)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
(I)先求出函数f(x)的导函数f′(x),然后令f′(x)<0,解得的区间即为函数f(x)的单调递减区间; (II)先求出端点的函数值f(-2)与f(2),比较f(2)与f(-2)的大小,然后根据函数f(x)在[-1,2]上单调递增,在[-2,-1]上单调递减,得到f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,建立等式关系求出a,从而求出函数f(x)在区间[-2,2]上的最小值. 【解析】 (I)f′(x)=-3x2+6x+9. 令f′(x)<0,解得x<-1或x>3, 所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞). (II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a, 所以f(2)>f(-2). 因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增, 又由于f(x)在[-2,-1]上单调递减, 因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2. 故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7, 即函数f(x)在区间[-2,2]上的最小值为-7.
复制答案
考点分析:
相关试题推荐
是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点.若存在,求出范围,若不存在,说明理由.
查看答案
已知函数f(x)=x2+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
查看答案
已知函数f(x)=2x,g(x)=manfen5.com 满分网+2.
(1)求函数g(x)的值域;
(2)求满足方程f(x)-g(x)=0的x的值.
查看答案
定义在R上的奇函数f(x),当x≥0时,f(x)=manfen5.com 满分网,则方程f(x)=manfen5.com 满分网的所有解之和为    查看答案
以下四个命题,是真命题的有    (把你认为是真命题的序号都填上).
①若p:f(x)=lnx-2+x在区间(1,2)上有一个零点;q:e0.2>e0.3,则p∧q为假命题;
②当x>1时,f(x)=x2,g(x)=manfen5.com 满分网,h(x)=x-2的大小关系是h(x)<g(x)<f(x);
③若f′(x)=0,则f(x)在x=x处取得极值;
④若不等式2-3x-2x2>0的解集为P,函数y=manfen5.com 满分网+manfen5.com 满分网的定义域为Q,则“x∈P”是“x∈Q”的充分不必要条件. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.