满分5 > 高中数学试题 >

设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(...

设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(Ⅰ)根据题意可求得b,进而根据离心率求得a和c,则椭圆的方程可得. (Ⅱ)设出直线AB的方程,与椭圆方程联立消去y,表示出x1+x2和x1x2,利用建立方程求得k. (Ⅲ)先看当直线的斜率不存在时,可推断出x1=x2,y1=-y2,根据=0求得x1和y1的关系式,代入椭圆的方程求得|x1|和|y1|求得三角形的面积;再看当直线斜率存在时,设出直线AB的方程,与椭圆方程联立,利用韦达定理表示出x1+x2和x1x2,利用=0求得2b2-k2=4,最后利用弦长公式和三角形面积公式求得答案. 【解析】 (Ⅰ)2b=2.b=1,e= 椭圆的方程为 (Ⅱ)由题意,设AB的方程为y=kx+ 由已知=0得: = ,解得k=± (Ⅲ)(1)当直线AB斜率不存时,即x1=x2,y1=-y2, 由=0 又A(x1,y1)在椭圆上,所以 S= 所以三角形的面积为定值 (2)当直线AB斜率存在时,设AB的方程为y=kx+b 得到x1+x2= 代入整理得: 2b2-k2=4 = 所以三角形的面积为定值
复制答案
考点分析:
相关试题推荐
已知点P(3,4)是椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)上的一点,F1、F2是椭圆的两焦点,若PF1⊥PF2,试求:
(1)椭圆方程;
(2)△PF1F2的面积.
查看答案
已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.
查看答案
中心在原点,一个焦点为F1(0,manfen5.com 满分网)的椭圆截直线y=3x-2所得的弦的中点的横坐标为manfen5.com 满分网,求椭圆的方程.
查看答案
椭圆manfen5.com 满分网+manfen5.com 满分网=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=    ,∠F1PF2的大小为    
manfen5.com 满分网 查看答案
已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的离心率为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.