满分5 > 高中数学试题 >

函数y=sin(-2x)-cos 2x的最小值为 .

函数y=manfen5.com 满分网sin(manfen5.com 满分网-2x)-cos 2x的最小值为    
利用两角和的正弦公式化简函数y=sin(-2x)-cos 2x,然后利用两角差的余弦化为cos(2x+),直接求出最小值即可. 【解析】 y=sin(-2x)-cos2x=cos2x-sin2x=cos(2x+),其最小值为-1. 故答案为:-1
复制答案
考点分析:
相关试题推荐
设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网,(a>b>0)上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),且manfen5.com 满分网,若椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案
已知点P(3,4)是椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)上的一点,F1、F2是椭圆的两焦点,若PF1⊥PF2,试求:
(1)椭圆方程;
(2)△PF1F2的面积.
查看答案
已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.
查看答案
中心在原点,一个焦点为F1(0,manfen5.com 满分网)的椭圆截直线y=3x-2所得的弦的中点的横坐标为manfen5.com 满分网,求椭圆的方程.
查看答案
椭圆manfen5.com 满分网+manfen5.com 满分网=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=    ,∠F1PF2的大小为    
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.