满分5 > 高中数学试题 >

如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=...

manfen5.com 满分网如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=manfen5.com 满分网,∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
(1)欲证AB⊥A1C,而A1C⊂平面ACC1A1,可先证AB⊥平面ACC1A1,根据三棱柱ABC-A1B1C1为直三棱柱,可知AB⊥AA1,由正弦定理得AB⊥AC,满足线面垂直的判定定理所需条件; (2)作AD⊥A1C交A1C于D点,连接BD,由三垂线定理知BD⊥A1C,则∠ADB为二面角A-A1C-B的平面角,在Rt△BAD中,求出二面角A-A1C-B的余弦值即可. 【解析】 (1)证明:∵三棱柱ABC-A1B1C1为直三棱柱,∴AB⊥AA1,在△ABC中,AB=1,AC=,∠ABC=60°,由正弦定理得∠ACB=30°, ∴∠BAC=90°,即AB⊥AC, ∴AB⊥平面ACC1A1, 又A1C⊂平面ACC1A1, ∴AB⊥A1C. (2)如图,作AD⊥A1C交A1C于D点,连接BD, 由三垂线定理知BD⊥A1C, ∴∠ADB为二面角A-A1C-B的平面角. 在Rt△AA1C中,AD===, 在Rt△BAD中,tan∠ADB==, ∴cos∠ADB=, 即二面角A-A1C-B的余弦值为.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=Asin(ωx+φ),x∈R(其中manfen5.com 满分网)的图象与x轴的交点中,相邻两个交点之间的距离为manfen5.com 满分网,且图象上一个最低点为manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)当manfen5.com 满分网,求f(x)的值域.
查看答案
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•…•xn的值为    查看答案
如图球O的半径为2,圆O1是一小圆,manfen5.com 满分网,A、B是圆O1上两点,若A,B两点间的球面距离为manfen5.com 满分网,则∠AO1B=   
manfen5.com 满分网 查看答案
某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有     人. 查看答案
设等差数列{an}的前n项和为Sn,若a6=S3=12,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.