满分5 > 高中数学试题 >

已知函数,其中a>0. (1)若f(x)在x=1处取得极值,求a的值; (2)求...

已知函数manfen5.com 满分网,其中a>0.
(1)若f(x)在x=1处取得极值,求a的值;
(2)求f(x)的单调区间;
(3)若f(x)的最小值为1,求a的取值范围.
(1)对函数求导,令f′(1)=0,即可解出a值. (2)f′(x)>0,对a的取值范围进行讨论,分类解出单调区间.a≥2时,在区间(0,+∞)上是增函数, (3)由(2)的结论根据单调性确定出最小值,当a≥2时,由(II)知,f(x)的最小值为f(0)=1,恒成立;当0<a<2时,判断知最小值小于1,此时a无解.当0<a<2时,(x)的单调减区间为,单调增区间为 【解析】 (1), ∵f′(x)在x=1处取得极值,f′(1)=0   即 a+a-2=0,解得  a=1 (2), ∵x≥0,a>0, ∴ax+1>0 ①当a≥2时,在区间(0,+∞)上f′(x)>0. ∴f(x)的单调增区间为(0,+∞) ②当0<a<2时,由f′(x)>0解得 由 ∴f(x)的单调减区间为,单调增区间为 (3)当a≥2时,由(II)知,f(x)的最小值为f(0)=1 当0<a<2时,由(II)②知,处取得最小值, 综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞)
复制答案
考点分析:
相关试题推荐
某食品企业一个月内被消费者投诉的次数用ξ表示,椐统计,随机变量ξ的概率分布如下:
ξ123
p0.10.32aa
(Ⅰ)求a的值和ξ的数学期望;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
查看答案
manfen5.com 满分网如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=manfen5.com 满分网,∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
查看答案
已知函数f(x)=Asin(ωx+φ),x∈R(其中manfen5.com 满分网)的图象与x轴的交点中,相邻两个交点之间的距离为manfen5.com 满分网,且图象上一个最低点为manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)当manfen5.com 满分网,求f(x)的值域.
查看答案
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•…•xn的值为    查看答案
如图球O的半径为2,圆O1是一小圆,manfen5.com 满分网,A、B是圆O1上两点,若A,B两点间的球面距离为manfen5.com 满分网,则∠AO1B=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.