满分5 > 高中数学试题 >

已知函数 (Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;...

已知函数manfen5.com 满分网
(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间.
(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,然后求出切点坐标,再用点斜式写出直线方程,最后化简成一般式即可; (II)先求出导函数f'(x),讨论k=0,0<k<1,k=1,k>1四种情形,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0即可. 【解析】 (I)当K=2时, 由于所以曲线y=f(x)在点(1,f(1))处的切线方程为 .即3x-2y+2ln2-3=0 (II)f'(x)= 当k=0时, 因此在区间(-1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0; 所以f(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞); 当0<k<1时,,得; 因此,在区间(-1,0)和上,f'(x)>0;在区间上,f'(x)<0; 即函数f(x)的单调递增区间为(-1,0)和,单调递减区间为(0,); 当k=1时,.f(x)的递增区间为(-1,+∞) 当k>1时,由,得; 因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0; 即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.
复制答案
考点分析:
相关试题推荐
某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为manfen5.com 满分网,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ123
pmanfen5.com 满分网admanfen5.com 满分网
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求数学期望Eξ.
查看答案
manfen5.com 满分网如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=manfen5.com 满分网,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.
查看答案
已知函数f(x)=2cos2x+sin2x-4cosx.
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)求f(x)的最大值和最小值.
查看答案
manfen5.com 满分网如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为    ;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为    查看答案
已知双曲线manfen5.com 满分网的离心率为2,焦点与椭圆manfen5.com 满分网的焦点相同,那么双曲线的焦点坐标为    ;渐近线方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.