满分5 > 高中数学试题 >

甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下: (...

甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:
manfen5.com 满分网
(Ⅰ)请用茎叶图表示这两组数据;
(Ⅱ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(Ⅲ)现要从中选派一人参加9月份的全国数学联赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.
(1)用茎叶图表示两组数据,首先要先确定“茎”值,再将数据按“茎”值分组分类表示在“叶”的位置. (2)要从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率,首先要计算“要从甲、乙两人的成绩中各随机抽取一个”的事件个数,再计算“甲的成绩比乙高”的事件个数,代入古典概型公式即可求解. (3)选派学生参加大型比赛,是要寻找成绩发挥比较稳定的优秀学生,所以要先分析两名学生的平均成绩,若平均成绩相等,再由茎叶图分析出成绩相比稳定的学生参加. 【解析】 (Ⅰ)作出茎叶图如下图 (Ⅱ)记甲被抽到的成绩为x,乙被抽到成绩为y,用数对(x,y)表示基本事件: (82,95),(82,75),(82,80),(82,90),(82,85), (82,95),(82,75),(82,80),(82,90),(82,85), (79,95),(79,75),(79,80),(79,90),(79,85), (95,95),(95,75),(95,80),(95,90),(95,85), (87,95),(87,75),(87,80),(87,90),(87,85), 基本事件总数n=25 记“甲的成绩比乙高”为事件A,事件A包含的基本事件: (82,75),(82,80),(82,75),(82,80),(79,75),(95,75), (95,80),(95,90),(95,85),(87,75),(87,80),(87,85), 事件A包含的基本事件数m=12 所以 (Ⅲ)派甲参赛比较合适,理由如下:=(70×1+80×3+90×1+9+2+2+7+5)=85, =(70×1+80×2+90×2+5+0+5+0+5)=85 ∵=,S甲2<S乙2∴甲的成绩较稳定,派甲参赛比较合适
复制答案
考点分析:
相关试题推荐
甲、乙两台机床同时加工直径为100 mm的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位mm):
甲:99,100,98,100,100,103
乙:99,100,102,99,100,100
(1)分别计算上述两组数据的平均数和方差;
(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求.
查看答案
如图是CBA篮球联赛中,甲乙两名运动员某赛季一些场次得分的茎叶图,则平均得分高的运动员是   
manfen5.com 满分网 查看答案
某地教育部门为了解学生在数学答卷中的有关信息,从上次考试的10 000名考生的数学试卷中,用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图).则这10 000人中数学成绩在[140,150]段的约是     人.
manfen5.com 满分网 查看答案
已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,平均数为10.若要使该总体的方差最小,则a、b的取值分别是     查看答案
设矩形的长为a,宽为b,其比满足b:a=manfen5.com 满分网≈0.618,这种矩形给人以美感称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.598 0.625 0.628 0.595 0.639
乙批次:0.618 0.613 0.592 0.622 0.620
根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )
A.甲批次的总体平均数与标准值更接近
B.乙批次的总体平均数与标准值更接近
C.两个批次总体平均数与标准值接近程度相同
D.两个批次总体平均数与标准值接近程度不能确定
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.