满分5 >
高中数学试题 >
已知平面α内有无数条直线都与平面β平行,那么( ) A.α∥β B.α与β相交 ...
已知平面α内有无数条直线都与平面β平行,那么( )
A.α∥β
B.α与β相交
C.α与β重合
D.α∥β或α与β相交
考点分析:
相关试题推荐
以下命题正确的是( )
A.两个平面可以只有一个交点
B.一条直线与一个平面最多有一个公共点
C.两个平面有一个公共点,它们可能相交
D.两个平面有三个公共点,它们一定重合
查看答案
某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).
(1)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.
表1:
表2:
①先确定x、y,再完成频率分布直方图,就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).
查看答案
根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.
(1)求直方图中x的值;
(2)计算一年中空气质量分别为良和轻微污染的天数;
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.已知5
7=78125,2
7=128,
,365=73×5)
查看答案
某市十所重点中学进行高三联考,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩作为样本,制成如下频率分布表:
(1)根据上面频率分布表,求①,②,③,④处的数值;
(2)在所给的坐标系中画出区间[80,150]上的频率分布直方图;
(3)从样本在[80,100]的个体中任意抽取2个个体,求至少有一个个体落在[90,100]的概率.
查看答案
在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y与腐蚀时间x的一组数据如表所示:
(1)画出数据的散点图;
(2)根据散点图,你能得出什么结论?
(3)求回归方程.
查看答案