满分5 > 高中数学试题 >

如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分...

如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.

manfen5.com 满分网
(1)欲证MN∥平面PAD,根据直线与平面平行的判定定理可知只需证MN与平面PAD内一直线平行即可,设PD的中点为E,连接AE、NE,易证AMNE是平行四边形,则MN∥AE,而AE⊂平面PAD,NM⊄平面PAD,满足定理所需条件; (2)欲证平面PMC⊥平面PCD,根据面面垂直的判定定理可知在平面PMC内一直线与平面PCD垂直,而AE⊥PD,CD⊥AE,PD∩CD=D,根据线面垂直的判定定理可知AE⊥平面PCD,而MN∥AE,则MN⊥平面PCD,又MN⊂平面PMC,满足定理所需条件. 证明:(1)设PD的中点为E,连接AE、NE, 由N为PC的中点知ENDC, 又ABCD是矩形,∴DCAB,∴ENAB 又M是AB的中点,∴ENAM, ∴AMNE是平行四边形 ∴MN∥AE,而AE⊂平面PAD,NM⊄平面PAD ∴MN∥平面PAD 证明:(2)∵PA=AD,∴AE⊥PD, 又∵PA⊥平面ABCD,CD⊂平面ABCD, ∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD ∴CD⊥AE,∵PD∩CD=D,∴AE⊥平面PCD, ∵MN∥AE,∴MN⊥平面PCD, 又MN⊂平面PMC, ∴平面PMC⊥平面PCD.
复制答案
考点分析:
相关试题推荐
设P是△ABC所在平面外一点,P和A、B、C的距离相等,∠BAC为直角.
求证:平面PCB⊥平面ABC.
查看答案
直线l在y轴上截距为2,且与直线l′:x+3y-2=0垂直,则l的方程是    查看答案
过点M(2,-3)且平行于A(1,2),B(-1,-5)两点连线的直线方程是     查看答案
一条光线经过点P(-2,3)射到x轴上,反射后经过点Q(1,1),入射光线所在的直线的方程是    ,反射光线所在的直线的方程是    查看答案
过点P(1,2)引一直线,使其倾斜角为直线l:x-y-3=0的倾斜角的两倍,则该直线的方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.