(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可得∠B=∠C,可得△BDA∽△CED;
(2)连接OD,根据平行线的判断与性质,易得OD⊥DE;且D是圆上一点,故可得DE是⊙O的切线.
证明:(1)∵AB是⊙O的直径,
∴∠ADB=90°.(1分)
又∵BD=CD,
∴AB=AC,∠B=∠C.(2分)
∵∠CED=∠ADB=90°,
∴△BDA∽△CED.(3分)
(2)连接OD,
∵OA=OB,BD=CD,
∴OD∥AC.(5分)
又∵DE⊥AC,
∴OD⊥DE.
所以DE是⊙O的切线.(6分)