满分5 > 高中数学试题 >

已知函数f(x)=(x3+3x2+ax+b)e-x. (1)如a=b=-3,求f...

已知函数f(x)=(x3+3x2+ax+b)e-x
(1)如a=b=-3,求f(x)的单调区间;
(2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明:β-α<6.
(1)对函数f(x)求导,里用导函数求解单调区间; (2)利用导函数的性质即函数的单调区间加以证明. 【解析】 (Ⅰ)当a=b=-3时,f(x)=(x3+3x2-3x-3)e-x, 故f′(x)=-(x3+3x2-3x-3)e-x+(3x2+6x-3)e-x=-e-x(x-3-9x)=-x(x-3)(x+3)e-x 当x<-3或0<x<3时,f′(x)>0; 当-3<x<0或x>3时,f′(x)<0. 从而f(x)在(-∞,-3),(0,3)单调增加,在(-3,0),(3,+∞)单调减少; (Ⅱ)f′(x)=-(x3+3x2+ax+b)e-x+(3x2+6x+a)e-x=-e-x[x3+(a-6)x+b-a]. 由条件得:f′(2)=0,即23+2(a-6)+b-a=0,故b=4-a, 从而f′(x)=-e-x[x3+(a-6)x+4-2a]. 因为f′(α)=f′(β)=0, 所以x3+(a-6)x+4-2a=(x-2)(x-α)(x-β)=(x-2)(x2-(α+β)x+αβ). 将右边展开,与左边比较系数得,α+β=-2,αβ=a-2. 故., 又(β-2)(α-2)<0,即αβ-2(α+β)+4<0.由此可得a<-6. 于是β-α>6.
复制答案
考点分析:
相关试题推荐
已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,manfen5.com 满分网=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的manfen5.com 满分网倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.

manfen5.com 满分网 查看答案
某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
表1:
生产能力分组[100,110][110,120][120,130][130,140][140,150]
人数48x53
表2:
生产能力分组[110,120][120,130][130,140][140,150]
人数6y3618
(i)先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
manfen5.com 满分网
(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)
查看答案
为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.
manfen5.com 满分网
查看答案
等差数列{an}的前n项和为sn,已知2am-am2=0,s2m-1=38,则m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.