根据切线长定理先证明∠ACB=90°,得直角三角形ABC;再由tan∠ABC==,得两圆弦长的比;进一步求半径的比.
【解析】
如图,连接O2B,O1A,过点C作两圆的公切线CF,交于AB于点F,作O1E⊥AC,O2D⊥BC,
由垂径定理可证得点E,点D分别是AC,BC的中点,
由弦切角定理知,
∠ABC=∠FCB=∠BO2C,∠BAC=∠FCA=∠AO1C,
∵AO1∥O2B,
∴∠AO1C+∠BO2C=180°,
∴∠FCB+∠FCA=∠ACB=90°,
即△ACB是直角三角形,
∴∠ABC=∠BO2D=∠ACO1,
设∠ABC=∠BO2D=∠ACO1=β,
则有sinβ=,cosβ=,
∴tanβ=•=•,
∴(tanβ)2==2.
故选C.