满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=x3+ax2-x+2. (Ⅰ)如果函数g(x)...

已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函数g(x)的单调递减区间为manfen5.com 满分网,求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2的解集为P,且(0,+∞)⊆P,求实数a的取值范围.
(Ⅰ)由函数是单调递减函数得g'(x)<0的解集为(-,1)即g'(x)=0方程的两个解是-,1将两个解代入到方程中求出a的值可得到g(x)的解析式; (Ⅱ)由g'(-1)=4得到直线的斜率,直线过(-1,1),则写出直线方程即可; (Ⅲ)把f(x)和g'(x)代入到不等式中解出a≥lnx-x-,设h(x)=lnx--,利用导数讨论函数的增减性求出h(x)的最大值即可得到a的取值范围. 【解析】 (Ⅰ)g'(x)=3x2+2ax-1,由题意3x2+2ax-1<0的解集是(-,1) 即3x2+2ax-1=0的两根分别是-,1 将x=1或-代入方程3x2+2ax-1=0得a=-1. ∴g(x)=x3-x2-x+2. (Ⅱ)由(Ⅰ)知:g'(x)=3x2-2x-1, ∴g'(-1)=4, ∴点P(-1,1)处的切线斜率k=g'(-1)=4, ∴函数y=g(x)的图象在点P(-1,1)处的切线方程为:y-1=4(x+1),即4x-y+5=0. (Ⅲ)∵(0,+∞)⊆P, ∴2f(x)≤g'(x)+2即:2xlnx≤3x2+2ax+1对x∈(0,+∞)上恒成立可得 a≥lnx-x-对x∈(0,+∞)上恒成立. 设h(x)=lnx--,则h′(x)=-+=- 令h′(x)=0,得x=1,x=-(舍) 当0<x<1时,h′(x)>0;当x>1时,h′(x)<0 ∴当x=1时,h(x)取得最大值,h(x)max=-2. ∴a≥-2, ∴a的取值范围是[-2,+∞)
复制答案
考点分析:
相关试题推荐
数列{an}的前n项和记为Sn,a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
查看答案
有一个容量为100的样本,数据的分组及各组的频数如下:
[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;
[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5),8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)估计数据小于30.5的概率.
查看答案
圆x2+y2=8内有一点P(-1,2),AB为过点P且倾斜角为α的弦;
(1)当manfen5.com 满分网时,求AB的长;
(2)当弦AB被点P平分时,求直线AB的方程.
查看答案
如图,AC为圆O的直径,点B在圆上,SA⊥平面ABC,
求证:平面SAB⊥平面SBC.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(1)求f(x)的最大值及相应的x的值;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.