满分5 > 高中数学试题 >

函数f(x)=loga(x-3a)(a>0,且a≠1),当点P(x,y)是函数y...

函数f(x)=loga(x-3a)(a>0,且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,Q(x-2a,-y)是函数y=g(x)图象上的点.
(1)写出函数y=g(x)的解析式.
(2)当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围.
(1)由题设条件,点P(x,y)是函数y=f(x)图象上的点时,Q(x-2a,-y)是函数y=g(x)图象上的点.求解函数y=g(x)的解析式可用代入法. (2)由x∈[a+2,a+3],及两对数函数有意义可以得到0<a<1,由此可以得到对数函数是减函数,由单调性将恒等式转化为一元二次不等式,构造函数h(x)=(x-2a)2-a2,求出h(x)在定义域[a+2,a+3]上的最大值与最小值,再一次将问题转化为,即得参数a的不等式组,解之求得参数的范围. 【解析】 (1)设P(x,y)是y=f(x)图象上点,令Q(x,y),则, ∴∴-y=loga(x+2a-3a),∴y=loga(x>a) (2)由对数函数的定义得 ∴x>3a ∵f(x)与g(x)在[a+2,a+3]上有意义. ∴3a<a+2 ∴0<a<1(6分) ∵|f(x)-g(x)|≤1恒成立⇒|loga(x-3a)(x-a)|≤1恒成立. 对x∈[a+2,a+3]上恒成立,令h(x)=(x-2a)2-a2 其对称轴x=2a,2a<2,2<a+2 ∴当x∈[a+2,a+3] hmin(x)=h(a+2),hmax=h(a+3) ∴原问题等价
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2x-1的反函数为f-1(x),g(x)=log4(3x+1).
(1)若f-1(x)≤g(x),求x的取值范围P;
(2)设manfen5.com 满分网,当x∈P时,求函数h(x)的值域.
查看答案
已知函数manfen5.com 满分网(a>1),求证:
(1)函数f(x)在(-1,+∞)上为增函数;
(2)方程f(x)=0没有负数根.
查看答案
关于函数manfen5.com 满分网,有下列结论:
①函数y=f(x)的图象关于y轴对称;
②在区间(-∞,0)上,函数y=f(x)是单调递减函数;
③函数f(x)的最小值为lg2;
④在区间(0,1)上,函数f(x)是单调递减函数,其中正确的是    查看答案
已知f(x)是定义在R上的偶函数,并且manfen5.com 满分网,当2≤x≤3时,f(x)=x,则f(105.5)=    查看答案
函数manfen5.com 满分网的增区间是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.