(Ⅰ)根据求得a1,进而根据4Sn=(an+1)2和4Sn-1=(an-1+1)2(n≥2)两式相减整理得(an+an-1)(an-an-1-2)=0,进而可得an-an-1=2判断出数列{an}是首项为1,公差为2的等差数列.求得其通项公式.
(Ⅱ)把(1)中求得的an代入中,即可求得bn,进而可用裂项法进行求和,得Tn=根据使原式得证.
【解析】
(Ⅰ)∵,
∴a1=1.
∵an>0,,
∴4Sn=(an+1)2.①
∴4Sn-1=(an-1+1)2(n≥2).②
①-②,得4an=an2+2an-an-12-2an-1,
即(an+an-1)(an-an-1-2)=0,
而an>0,
∴an-an-1=2(n≥2).
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.
(Ⅱ).
Tn=b1+b2++bn==.